
Version 4.1
Copyright (c) 1995 by Lucien Cinc

Introduction
The WOIO package

General Information
Distributing External Commands
WOIO Library Compatibility

Programming Information
Entry function main()
Exit function exit() and Errorlevels

Stdin, Stdout and Stderr

External Commands
Display arg...() function results (ARGS)

Function Reference
Categories

Function Reference Categories
Control Functions

screen enable/disable buffered screen output
yield Allow other tasks to multitask.

Screen Output Functions
printf formatted output
puts display a string
putchar display a character
putch display a character (direct video)
textcolor change foreground colours

perror display an error message
errcnt global variable

clrscr clear the screen
clreol clear till the end of the line
gotoxy set the caret screen position
wherex get the horizontal caret position
wherey get the vertical caret position

scroll scroll a number of line up or down
insline insert a line
delline delete a line

scrflush update the screen
scrwidth get the screen width
scrheight get the screen height

atoc delimit a number with comma's

Input Functions
scanf formatted input
gets get a string
getchar get a character
getch get a character (direct keyboard)

Command Line Functions
argc get the number of command line arguments
argv retrieve a command line argument
arg_c Global variable
arg_v Global variable

argpath retrieve a command line path
argabs retrieve an absolute command line path
argtail retrieve the actual command line tail
argn get the number of command line switches
args retrieve all the command line switches

Status Bar Functions
limit set the status bar target value
inc update the status bar by a value
empty clear the status bar percent indicator

File Manipulation Functions

filesize get the size of a file
istextfile check for a text file

filecpy copy a file
filencpy copy part of a file
filecat concatenate a file
filencat concatenate part of a file

File Name Functions
fillfile create a file table of all files in a given path
getfile retrieve a file control block from the file table
getfilepath retrieve a file path from the file table
getfilename retrieve a file name from the file table
padfilename pad a file name suitable for displaying

Path Name Functions
fillpath create a path table of all directories
fillpathall create a path table of all directories for all drives
freepaths free the path table
getpath retrieve a path from the path table

Unix Functions
todos convert a Unix command to a DOS command
tounix convert a DOS command to a Unix command
isunix determine if Unix mode is on or off

File Description Functions
getdesc get a file description
setdesc set a file description
deldesc delete a file description

Environment Functions
getenvironment get a WinOne environment variable
putenvironment set a WinOne environment variable

The WOIO package
WOIO is a library that allows programs to interact (ie. preform I/O functions) with the main
WinOne window. WOIO is essentially an abstract layer that sits on top of a normal windows
program and provides a number of functions, that covers up just what is necessary to write a
windows program. In fact a program written using WOIO, will look more like a DOS program then
a Windows program. For example, WOIO programs use main() as the entry point, just like DOS
programs do, and printf() will write to the main WinOne window (ie. a virtual screen), just like
DOS programs write to the screen.

WOIO greatly simplifies the writing of programs intended for execution by WinOne. Those of you
familiar with Windows programming would known just how much code is needed to displaying
something as simple as "hello, world" inside a window. It takes about 2 pages of code to do this
properly, registering a class, set-up up an event loop to handle events like WM_PAINT, creating a
font, etc. Using the WOIO library the same can be accomplish with 5 lines of code :-

#include "woio.h"

int main(void)
{
 printf("Hello, World\n");

 return 0;
}

There are some additional things that need to be set-up correctly before the above program will
work, for example, the project file, renaming the .EXE to a .EXC, etc. Apart from these extra
things that are needed, some programs will only need to be modified to include this library to
compile. However this will NOT generally be the case.

Distributing External Commands
Users of WinOne (either registered or un-registered) may freely use the WOIO Library package to
program External Commands and can distribute them in any way, shape or form. The authors of
External Commands are solely responsible for the quality of the commands they program and
distribute.

Library Compatibility
External Commands written with the WOIO Library package are all compatible upwards, that is,
External Commands will still run with newer and updated versions of WinOne. However, the
reverse does not apply. For example, an External Command that is written for a newer version of
WinOne will not run on an older version of WinOne. The following window is displayed to inform
the user that an External Command is meant for a newer version of WinOne and after pressing
the OK button, the External Command will be terminated :-

The entry function main()

WOIO programs have an entry function main(), which is similar to DOS programs, but with one
important difference, main() does not include the argc and argv arguments, but instead these
arguments are implemented as functions calls. The arg... family of functions provide a high
level of functionality that the standard argc and argv arguments do not and greatly simplifies the
processing of command line arguments. It is not uncommon to see programs that devote whole
modules purely for handling command line arguments and this is clearly not necessary when
using the WOIO library. It may be interesting to note that these functions are similar to that used
internally by WinOne itself. There are 10 arg... functions available, which include :-

argc argn argpath
argv args argabs
argtail

The exit function exit() and Errorlevels
The standard library exit() may be used to exit a program at any time during it execution and
the value past to it will set the errorlevel after the program exits. However, the following
errorlevel values are reserved by WinOne and should not be used :-

3 - Abnormal termination (ie. ^C pressed).
255 - Incompatible WOIO library version. (ie. the External Command is meant

for a newer version of WinOne).

When a program exits it should return 0 to signal a normal termination and a value greater then 0
(ie. excluding 3 and 255) to signal an error :-

#include "woio.h"

int main(void)
{
 printf("Hello, World\n");

 return 0; /* normal termination */
}

Command ARGS
Function:

Displays in a tabular form the values returned by all the arg...() functions.
Syntax:

ARGS [anything]

anything Sequence of characters. This may include strings, arguments and
switches.

See Also
argc argn argpath arg_c
argv args argabs arg_v
argtail

Borland or Turbo C/C++ Compilers for Windows

The WOIO package is compiled using Borland C/C++ for windows. Therefore, to use the WOIO
package you will need to use either the Borland or Turbo C/C++ compilers for Windows 3.0 and
above.   

Stdin, Stdout and Stderr
The standard I/O streams stdin, stdout and stderr are not supported by the WOIO library.
Instead WOIO provides a number of functions that attempt to simulate these streams. Functions
that requires stdin, stdout or stderr to be past as a parameter will NOT work, and should NOT
be used. For example, fputc(c, stdout), putc(c, stdout), fgetc(stdin) or getc(stdin)
should not be used. When a program uses these functions, the program    will still compile and
run, but will not produce the expected result. You may very well be wondering what happens
when a program uses these functions, well, the output will most likely end up writing over the
desktop window. WOIO supports the following functions, which attempt to mimic the standard I/O
functions of the same name as closely as is possible :-

printf textcolor scrwidth scanf
puts clrscr scrheight gets
putchar clreol getchar
putch gotoxy getch
perror wherex

wherey

Actually, stdin, stdout and stderr is a special case of a much larger problem. In general, it is
not recommended to use any functions from the standard I/O library that uses buffered I/O or file
streams (ie. FILE *stream). For example fopen, fread, fwrite,fclose, fprintf, etc..., should not
be used, instead un-buffered file I/O should be used, for example open, close, read, write,
_dos_open, _dos_close, _dos_read, _dos_write, OpenFile, etc... Un-buffered file I/O will allow
yield points to be inserted into the code, so that other tasks can run (ie. multi task).

Control Functions

void screen(flag)
int flag /* BUFFERED or UNBUFFERED value */

Enable or disable buffered screen output. When writing to the screen the text will not appear until
enough lines have been written to fill one complete screen.

Parameter Description
flag When this value is BUFFERED, then the screen will only update

after each screen full. When this value is UNBUFFERED, then the
screen is updated to show any lines not yet displayed.

Returns
There is no return value.

Comments
When screen() is set to BUFFERED it should be set to UNBUFFERED before the program
terminates. When screen() is not used then the screen is updated as it is written to.

The values BUFFERED and UNBUFFERED are #defined in the WOIO.H file.

Example

#include "woio.h"

int main(void)
{
 int ret;

 screen(BUFFERED); /* enable buffered output */

 ret = dofunction();

 screen(UNBUFFERED); /* flush any lines not displayed */

 return ret; /* error level */
}

void yield(void)
Allows other tasks that are running to multitask.

Returns
There is no return value.

Comments
Since Windows is a co-operative multitasking operating system, yield() should be called when a
long period of time elapses without calling any of the WOIO library functions.

Example

#include "woio.h"

int main(void)
{
 printf("press ^C to quit: \n");

 while (1)

yield(); /* allow other tasks to multitask */
}

Screen Output Functions

int    printf(fmt, ...)
printf() provides formatted output and functions similar to the standard run time library
printf().

Comments
For a full description of printf() consult your standard run time library reference manual.

printf() will only display printable characters.

The following #define values can be past as character arguments to change the colour of the text
displayed by printf() :-

/*
 all external commands should use the following system
 colours instead of the fix colours
*/

#define COL_FILENAME (char)144 /* system text colours */
#define COL_HIGHFNAME (char)145
#define COL_NUMBER (char)146
#define COL_TEXT (char)147
#define COL_HIGHTEXT (char)148
#define COL_BOLDTEXT (char)149
#define COL_ENVNAME (char)150
#define COL_ENVSTR (char)151
#define COL_ERROR (char)152
#define COL_LHS (char)153
#define COL_HIGHLHS (char)154
#define COL_RHS (char)155
#define COL_FILEDATE (char)156
#define COL_FILETIME (char)157
#define COL_FILEATTRIB (char)158
#define COL_FILEDESC (char)159

#define BLACK (char)128 /* text colours */
#define RED (char)129
#define GREEN (char)130
#define BLUE (char)131
#define YELLOW (char)132
#define MAGENTA (char)133
#define CYAN (char)134
#define WHITE (char)135
#define LIGHTGRAY (char)136
#define LIGHTRED (char)137
#define LIGHTGREEN (char)138
#define LIGHTBLUE (char)139
#define BROWN (char)140
#define LIGHTMAGENTA (char)141
#define LIGHTCYAN (char)142
#define DARKGRAY (char)143

See Also

puts
putch
putchar
textcolor

scanf
gets

Example

Consider the following :-

 printf("%cHello, world\n%cHow are you?",
 COL_FILETIME, COL_FILEATTRIB);

will display the following :-

Hello, world
How are you?

void puts(s)
char *s /* character string */

Display a character string along with a CR-LF character combination.

Parameter Description
s Address of a    NULL terminated character string.

Returns
There is no return value.

Comments
Function puts() is streamable, that is, when stdout is redirected on the command line to a file,
the character string will be written to the file.

Tab characters are padded with space characters.

See Also
printf
putchar
putch
gets

void putch(c)
char c /* character */

Display a character directly to the screen.

Parameter Description
c Character value.

Returns
There is no return value.

Comments
Function putch() writes directly to the screen, and as a result is not streamable.

Tab characters are padded with space characters.

See Also
printf
puts
putchar
getch

Example

void myerror(char *msg)
{
 textcolor(COL_ERROR); /* display message in COL_ERROR */

 while (*msg) /* display message */
 putch(*msg++);

 putch('\n');
}

void putchar(c)
char c /* character */

Display a character.

Parameter Description
c Character value.

Returns
There is no return value.

Comments
Function putchar() is streamable, that is, when stdout is redirected on the command line to a
file, the character will be written to the file.

Tab characters are padded with space characters.

See Also
printf
puts
putch
getchar

Example

void charmsg(char *msg)
{
 while (*msg) /* display message */
 putchar(*msg++);

 putchar('\n');
}

int errcnt
Global variables that is incremented by one each time perror() is called to display an error
message.

void perror(msg)
char *msg /* character string */

Display an error message.

Parameter Description
msg Address of a    NULL terminated character string that contains the

message    to display.

Returns
There is no return value.

Comments
The message along with two CR-LF character combinations is written to stderr. Stderr is not
streamable, that is, when stdout is redirected on the command line to a file, stderr will still
write to the screen.

RED is used for the foreground colour.

See Also
errcnt
printf
puts
putchar

void textcolor(col)
char col /* colour value */

Set the current text colour.

Parameter Description
col Range value, that specifies the colour to set.

Returns
There is no return value.

Comments
The following colours are #defined in the WOIO.H header file :-

/*
 all external commands should use the following system
 colours instead of the fix colours
*/

#define COL_FILENAME (char)144 /* system text colours */
#define COL_HIGHFNAME (char)145
#define COL_NUMBER (char)146
#define COL_TEXT (char)147
#define COL_HIGHTEXT (char)148
#define COL_BOLDTEXT (char)149
#define COL_ENVNAME (char)150
#define COL_ENVSTR (char)151
#define COL_ERROR (char)152
#define COL_LHS (char)153
#define COL_HIGHLHS (char)154
#define COL_RHS (char)155
#define COL_FILEDATE (char)156
#define COL_FILETIME (char)157
#define COL_FILEATTRIB (char)158
#define COL_FILEDESC (char)159

#define BLACK (char)128 /* text colours */
#define RED (char)129
#define GREEN (char)130
#define BLUE (char)131
#define YELLOW (char)132
#define MAGENTA (char)133
#define CYAN (char)134
#define WHITE (char)135
#define LIGHTGRAY (char)136
#define LIGHTRED (char)137
#define LIGHTGREEN (char)138
#define LIGHTBLUE (char)139
#define BROWN (char)140
#define LIGHTMAGENTA (char)141
#define LIGHTCYAN (char)142
#define DARKGRAY (char)143

There are no blinking or bold characters.

See Also

printf

void clrscr(void)
Clear the screen.

Returns
There is no return value

Comments
When the screen is cleared, the contains of the screen are NOT moved to the scroll back buffer.

void clreol(void)
Clear till the end of the current line.

Returns
There is no return value

void gotoxy(x, y)
int x /* co-ordinate */
int y /* co-ordinate */

Position the caret on the screen.

Parameter Description
x Co-ordinate on the horizontal x-axis.
y Co-ordinate on the vertical y-axis.

Returns
There is no return value

Comments
The first character on the screen is at co-ordinate 1, 1.

See Also
wherex
wherey

Example

#include "woio.h"
#include <string.h>

/*
 Display the string "Hello, World"
 centred on the screen
*/

int main(void)
{
 char *s;

 s = "Hello, World"; /* string to display */
 clrscr();

 gotoxy((scrwidth() - strlen(s)) / 2, scrheight() / 2);
 printf("%c%s", COL_HIGHTEXT, s);

 gotoxy(0, scrheight());

 return 0; /* error level */
}

int    wherex(void)
Determine the horizontal location of the caret.

Returns
Co-ordinate of the caret on the horizontal x-axis.

Comments
Co-ordinates start from 1.

See Also
wherey
gotoxy

int    wherey(void)
Determine the vertical location of the caret.

Returns
Co-ordinate of the caret on the vertical y-axis.

Comments
Co-ordinate start from 1.

See Also
wherex
gotoxy

void scroll(start, end, num)
int start /* position of line */
int end /* position of line */
int num /* number of places to scroll */

Scroll a range of line, a specified number of places, up or down on the screen.

Returns
There is no return value

Comments
The first line on the screen is at position 0.

A positive value for num, scrolls the range of lines downward and a negative value for num,
scrolls the range of lines upward.

void insline(at)
int at /* position of line */

Insert a blank line at the specified position.

Returns
There is no return value

Comments
The first line on the screen is at position 0.

void delline(at)
int at /* position of line */

Delete a line at the specified position.

Returns
There is no return value

Comments
The first line on the screen is at position 0.

void scrflush(void)
Force updating of the screen.

Returns
There is no return value

int scrwidth(void)
Determine the screen width in characters.

Returns
The screen width in characters.

See Also
scrheight

int scrheight(void)
Determine the screen height in characters.

Returns
The screen height in characters.

See Also
scrwidth

char *atoc(number)
char *number /* character string */

Delimit a character string containing a number with comma's, every thousand.

Parameter Description
number Address of a the character string containing the number to

convert.

Returns
The address of the original character string number.

Comments
The character string number must be large enough to hold the comma's inserted into it.

Input Functions

int scanf(fmt, ...)
scanf() provides formatted input and functions the same as the standard run time library
scanf().

Comments
For a full description of scanf() consult your standard run time library reference manual.

See Also
gets
getch
getchar
printf

char *gets(s)
char *s /* character string */

Get a character string without the CR-LF character combination.

Parameter Description
s Address of a character array to store the string. This array must

be at
least 80 characters in size.

Returns
On success, it returns the address of the character array,    where the NULL terminated character
string is stored. On end of file (ie. EOF) or on error, NULL is returned.

Comments
Function gets() is streamable, that is, when stdin is redirected on the command line from a file,
the character string will be read from the file and will not be echoed to the screen.

Tab characters are converted to a single space character, unless stdin has been redirected on
the command line.

See Also
scanf
getch
getchar
puts

Example

#include "woio.h"
#include <dos.h>

/* Determine whether a file exists */

int prompt_open(void)
{
 char buf[80];
 int handle;

 printf("%cEnter filename:%c ", COL_HIGHTEXT, COL_TEXT);

 if (gets(buf)) /* get a filename */
 if (_dos_open(buf, 0, &handle)
 return handle; /* opened file */

 return 0; /* failed to open file */
}

int main(void)
{
 int handle;

 if ((handle = prompt_open()) != 0) {
 printf("File exists\n");
 _dos_close(handle); /* close the file */
 return 1;

 }

 return 0;
}

int getchar(void)
Get a character .

Returns
On success, a character value is returned, on error or end of file, a value of EOF (ie. -1) is
returned.

Comments
Function getchar() is streamable, that is, when stdin is redirected on the command line from a
file, the characters will be read from the file and will not be echoed to the screen.

When stdin has NOT been redirected on the command line then the following applies :-
1. Characters are echoed to the screen.
2. Tab characters are converted to single space characters,
3. Carriage return characters are converted to new line characters (ie. '\r' mapped to
'\n').
4. All non-printable characters are ignored.

See Also
scanf
getch
putch
putchar

int getch(void)
Get a character from the keyboard

Returns
A character value.

Comments
Function getch() read characters from the keyboard, and as a result is not streamable.

Characters read are not echoed to the screen.

There is no character mapping. (ie. '\r' is NOT mapped to '\n');

See Also
scanf
putch
getchar
putchar

Command Line Functions

int arg_c
char *arg_v[]
Global variables that contains the number of command line arguments (ie. arg_c) and the actual
command line arguments (ie. arg_v).

Comments
arg_c and arg_v is provided for compatibility with the standard library argc and argv, which is
past to a normal C or C++ main(), and has the following format :-

#include "stdio.h"

int main(int argc, char *argv[])
{
}

and a WinOne external command main(), has the following format :-

#include "woio.h"

int main(void)
{
 /* arg_c is used instead of argc */
 /* arg_v is used instead of argv */
}

When using arg_c and arg_v, avoid using the arg...() family of functions, since arg_c and
arg_v do not separate command line arguments and command line switches.

See Also
argc
argv
argn
args

int    argc(void)
Determines the number of command line arguments.

Returns
The number of command line arguments.

Comments
Command line strings (eg. "This is a string") are considered as command line arguments.
Command line switches are not considered as part of the command line arguments.

See Also
argv
argn
args

char *argv(index)
int index /* command line argument */

Retrieve a command line argument.

Parameter Description
index Specifies which argument to retrieve. Specifying an index of 0

retrieves
the programs name. Command line arguments start from an
index of 1.

Returns
On success it returns the address of a NULL terminated string containing the argument. On error
it returns a NULL.

Comments
The argument is stored in a static buffer and is over-written each time this function is called. This
function cannot be used to retrieve command line switches.

See Also
argc
argn
args

Example

#include "woio.h"
#include <stdlib.h>

/* Sum all value on the command line */

int main(void)
{
 long total;
 int i, n;

 total = 0; /* zero total */
 if ((n = argc()) == 0) {
 perror("nothing to sum");
 return 1;
 }

 for (i = 0;i < n;i++)

 total += atol(argv(i + 1));

 printf("%ctotal=%c%ld\n", COL_HIGHTEXT, COL_NUMBER, total);

 return 0; /* error level */
}

char *argpath(index)
int index /* command line argument */

Retrieve a command line argument and convert it to a full path name.

Parameter Description
index Specifies which argument to retrieve. Specifying an index of 0

retrieves
the current directory, as a full path name. Command line
arguments start from an index of 1.

Returns
On success it returns a the address of a NULL terminated string containing the full path name. On
error it returns a NULL.

Comments
The full path name is stored in a static buffer and is over-written each time this function is called.

Full path names are made up of the following components :-

drive:\directory\filename

Component When not Specified
drive Current drive is used.
directory Current directory is used. Also relative

directories are converted to absolute
directories.

filename *.* is used. Wildcard characters are
allowed in the filename.

See Also
argc
argv
argabs

Examples
The following examples assume the current directory is C:\WINDOWS :-

Argument Full path
C: C:\WINDOWS*.*
C:\ C:*.*
\DOS\ C:\DOS*.*
NOTEPAD.EXE C:\WINDOWS\NOTEPAD.EXE
.EXE C:\WINDOWS.EXE
WHAT C:\WINDOWS\WHAT.
. C:\WINDOWS*.*
. C:\WINDOWS*.*
.. C:*.*

char *argabs(index)
int index /* command line argument */

Retrieve a command line argument and convert it to an absolute path name.

Parameter Description
index Specifies which argument to retrieve. Specifying an index of 0

retrieves
the current directory, as an absolute path name. Command line
arguments start from an index of 1.

Returns
On success it returns the address of a NULL terminated string containing the absolute path name.
On error it returns a NULL.

Comments
The absolute path name is stored in a static buffer and is over-written each time this function is
called.

Absolute path names are made up of the following components :-

drive:\directory\filename

Component When not Specified
drive Current drive is used.
directory Current directory is used. Also relative

directories are converted to absolute
directories.

filename The previous directory name becomes the
filename. Wildcard characters are allowed
in filename.

See Also
argc
argv
argpath

Example
The following examples assume the current directory is C:\WINDOWS :-

Argument Full path
C: C:\WINDOWS.
C:\ C:\.
\DOS\ C:\DOS.
NOTEPAD.EXE C:\WINDOWS\NOTEPAD.EXE
.EXE C:\WINDOWS.EXE
WHAT C:\WINDOWS\WHAT.
. C:\WINDOWS*.*
. C:\WINDOWS.
.. C:\.

char *argtail(void)
Retrieve the actual command line tail.

Returns
Address of a NULL terminated string containing the command line tail.

Comments
The actual command line tail does not include any redirection arguments. Also, the tail is stored
in a static buffer and is over-written each time this function is called.

See Also
argc
argv
argn
args

int    argn(void)
Determines the number of command line switches.

Returns
The number of switches.

See Also
argc
argv
args

char *args(void)
Retrieve the command line switches.

Returns
Address of a NULL terminated string containing all the switches.

Comments
Switches are stored in a static buffer and is over-written each time this function is called.

The string returned can be empty, when there are no command line switches.

See Also
argc
argv
argn

Status Bar Functions

void limit(upper)
unsigned long upper/* upper limit */

Set the Status Bar upper limit (ie. target value) to reach.

Parameter Description
upper Specifies the upper limit to reach.

Returns
There is no return value.

Comments
This will display 0 in the Precent indicator, the next time the display is updated.

See Also
inc
empty

void inc(value)
unsigned long value /* value to increment by */

Increment the current Status Bar total.

Parameter Description
value Specifies a value to be added to the current Status Bar total.

Returns
There is no return value.

Comments
Function inc() may be called many times before a percentage is calculated and displayed, since
the Status Bar is updated once every second.

See Also
limit
empty

void empty(void)
Clear the Status Bar Percent indicator.

Returns
There is no return value.

Comments
The Status Bar Percent indicator is blanked unconditionally.

See Also
limit
inc

File Manipulation Functions

long filesize(path)
char *path /* file name path */

Retrieve the size of a file.

Parameter Description
path Address of a NULL terminated character string containing the

path of a filename. This path can be relative or absolute and can
not contain wildcard characters.

Returns
The size (in bytes) of the specified file. When the file does not exist -1 is returned.

Comments
On error filesize() does NOT display an error message.

See Also
filecpy
filencpy
filecat
filencat

int istextfile(path)
char *path /* file name path */

Determine whether the specified file contains text.

Parameter Description
path Address of a NULL terminated character string containing the

path of a filename. This path can be relative or absolute and can
not contain wildcard characters.

Returns
TRUE when the specified file is a text file, otherwise FALSE is returned. On error -1 is returned.

Comments
On error istextfile() does NOT display an error message.

Function istextfile() check's the first 100 bytes of the specified file to determine if it is a text
file or not.

long filecpy(dst, src, o_flag, u_flag)
char *dst /* file name path */
char *src /* file name path */
int o_flag /* open file flags */
int u_flag /* update status bar flags */

Copies the source file to the destination file.

Parameter Description
dst Address of a NULL terminated character string containing the

path of the destination file. This path can be relative or absolute
and can NOT contain wildcard characters.

src Address of a NULL terminated character string containing the
path of the source file. This path can be relative or absolute and
can NOT contain wildcard characters.

o_flag Value which specifies how to open the destination file. These
values are #defined in the WOIO.H header file and include:-

O_OPEN Open the destination    file.
O_CREATE Create the destination file. When the

destination file already exists then it is
truncated to 0 length.

O_CREATNEW Create the destination file. When
the destination file already exists then
filecpy() will fail.

These values can NOT be combined.
u_flag Value which specifies how to update the status bar percentage.

These values are #defined in the WOIO.H header file and
include:-

INC_BYTE Increment by the size of the source file.
INC_ONE Increment by a value of 1 only.
INC_NONE Do not update.

Returns
On success, it returns the number of bytes copied to the destination file. On error a value of -1 is
returned.

Comments
On error, filecpy() displays one of the following error messages:-

Out of memory
Invalid path or file name
Destination file already exists
Read error
Insufficient disk space

See Also
filesize
filencpy
filecat
filencat

long filecat(dst, src, u_flag)
char *dst /* file name path */
char *src /* file name path */
int u_flag /* update status bar flags */

Appends the source file to the end of the destination file.

Parameter Description
dst Address of a NULL terminated character string containing the

path of the destination file. This path can be relative or absolute
and can NOT contain wildcard characters.

src Address of a NULL terminated character string containing the
path of the source file. This path can be relative or absolute and
can NOT contain wildcard characters.

u_flag Value which specifies how to update the status bar percentage.
These values are #defined in the WOIO.H header file and
include:-

INC_BYTE Increment by the size of the source file.
INC_ONE Increment by a value of 1 only.
INC_NONE Do not update.

Returns
On success, it returns the number of bytes appended to the destination file. On error a value of -1
is returned.

Comments
On error, filecat() displays one of the following error messages:-

Out of memory
Invalid path or file name
Destination file already exists
Seek error
Read error
Insufficient disk space

See Also
filesize
filecpy
filencpy
filencat

long filencpy(dst, src, num, offset, o_flag, u_flag)
char *dst /* file name path */
char *src /* file name path */
long num /* number of bytes to copy */
long offset /* starting offset */
int o_flag /* open file flags */
int u_flag /* update status bar flags */

Copy a part of the source file to the destination file.

Parameter Description
dst Address of a NULL terminated character string containing the

path of the destination file. This path can be relative or absolute
and can NOT contain wildcard characters.

src Address of a NULL terminated character string containing the
path of the source file. This path can be relative or absolute and
can NOT contain wildcard characters.

num Value specifying the number of bytes in the source file that
should be copied to the destination file. A value of -1 indicates
that all the remaining bytes in the source file, taking into account
the starting offset, should be copied.

offset Value specifying an offset into the source file, where characters
will be read from, The first byte in the source file is located at
offset zero.

o_flag Value which specifies how to open the destination file. These
values are #defined in the WOIO.H header file and include:-

O_OPEN Open the destination    file.
O_CREATE Create the destination file. When the

destination file already exists then it is
truncated to 0 length.

O_CREATNEW Create the destination file. When
the destination file already exists then
filencpy() will fail.

These values can NOT be combined.
u_flag Value which specifies how to update the status bar percentage.

These values are #defined in the WOIO.H header file and
include:-

INC_BYTE Increment by the size of the source file.
INC_ONE Increment by a value of 1 only.
INC_NONE Do not update.

Returns
On success, it returns the number of bytes copied to the destination file. On error a value of -1 is
returned.

Comments
On error, filencpy() displays one of the following error messages:-

Out of memory
Invalid path or file name
Destination file already exists
Out of range

Seek error
Read error
Insufficient disk space

See Also
filesize
filecpy
filecat
filencat

long filencat(dst, src, num, offset, u_flag)
char *dst /* file name path */
char *src /* file name path */
long num /* number of bytes to copy */
long offset /* starting offset */
int u_flag /* update status bar flags */

Appends a part of the source file to the end of the destination file.

Parameter Description
dst Address of a NULL terminated character string containing the

path of the destination file. This path can be relative or absolute
and can NOT contain wildcard characters.

src Address of a NULL terminated character string containing the
path of the source file. This path can be relative or absolute and
can NOT contain wildcard characters.

num Value specifying the number of bytes in the source file that
should be appended to the destination file. A value of -1
indicates that all the remaining bytes in the source file, taking
into account the starting offset, should be appended.

offset Value specifying an offset into the source file, where characters
will be read from, The first byte in the source file is located at
offset zero.

u_flag Value which specifies how to update the status bar percentage.
These values are #defined in the WOIO.H header file and
include:-

INC_BYTE Increment by the size of the source file.
INC_ONE Increment by a value of 1 only.
INC_NONE Do not update.

Returns
On success, it returns the number of bytes appended to the destination file. On error a value of -1
is returned.

Comments
On error, filecat() displays one of the following error messages:-

Out of memory
Invalid path or file name
Destination file already exists
Out of range
Seek error
Read error
Insufficient disk space

See Also
filesize
filecpy
filencpy
filecat

File Name Functions

int fillfile(path, attr)
char *path /* directory path */
unsigned int attr /* file attributes */

Create a File Table of all the files in a given path and with a given attribute.

Parameter Description
path Address of a NULL terminated character string containing a path.

This path can be relative or absolute and can contain Wildcard
characters any where in the filename part of the path.

attr DOS File attribute (defined in DOS.H), include the following    :-

FA_RDONLY Read-only
FA_HIDDEN    Hidden file
FA_SYSTEM    System file
FA_LABEL      Volume label
FA_DIREC      Directory
FA_ARCH    Archive

Returns
On success, it returns the number of files that match the path and attribute specified, otherwise,
it returns a value of zero, when no files match.

Comments
Function fillfile() replaces findfirst(), findnext(), _dos_findfirst() and
_dos_findnext(), since these functions do not support extended wildcard card characters.

WinOne allows wildcard characters to be placed anywhere inside a filename and be correctly
interpreted.

All files that meet the specifies requirements are places inside a table (ie. File Table) which is
over-written with each call to this function. Use the getfile...() functions to access the
information stored in this table.

The table is sorted in alphabetical order.

See Also
getfile
getfilepath
getfilename

BOOL getfile(index, pff)
int index /* index into File Table */
struct ffblk *pff /* DOS file control block structure */

Retrieve a DOS file control block structure from the File Table.

Parameter Description
index Specifies which ffblk to retrieve from the File Table. Entries in the

File Table start from an index of 0.
pff Address of a DOS file control block structure (defined in DIR.H) :-

struct ffblk {
char ff_reserved[21]; /* reserved by DOS */
char ff_attrib;                /* attribute found */
int    ff_ftime;                /* file time */
int    ff_fdate;                /* file date */
long ff_fsize;                /* file size */
char ff_name[13];          /* found file name */

};

Returns
On success, it returns a non-zero value and the file control block structure is filled. On error zero
is returned.

Comments
Use the fillfile() to fill the File Table before using getfile().

See Also
fillfile
getfilepath
getfilename

Example

#include "woio.h"
#include <dir.h>

/* Display a file listing */

int dir(char *path)
{
 int i, n;
 struct ffblk ffblk;

 printf("%cDirectory of %s\n\n", COL_HIGHTEXT, path);

 if ((n = fillfile(path, 0)) == 0) {
 perror("No files found");
 return 1;
 }

 for (i = 0;i < n;i++) {

 if (getfile(i, &ffblk) == FALSE) {
 perror("Bad index");

 return 1;
 }

 printf(" %c%-13s%c%9ld\n",
 COL_FILENAME, ffblk.ff_name,
 COL_NUMBER, ffblk.ff_fsize); /* display file names */

 }

 return 0; /* all done */
}

int main(void)
{
 char *path;
 int ret;

 if (argc() > 1) { /* check number of arguments */
 perror("Too many or few arguments");
 return 1;
 }

 screen(BUFFERED); /* buffered screen output */

 if ((path = argpath(argc())) == NULL) {
 perror("Path or file not found");
 return 1;
 }

 ret = dir(path);

 screen(UNBUFFERED); /* flush output */

 return ret; /* error level */
}

char *getfilepath(index)
int index /* index into File Table */

Retrieve a file path from the File Table.

Parameter Description
index Specifies which file path to retrieve from the File Table. Entries in

the File Table start from an index of 0.

Returns
On success it returns the address of a NULL terminated string containing the path name. On error
it returns a NULL.

Comments
Use the fillfile() to fill the File Table before using getfilepath().

Path names are stored in a static buffer and is over-written each time this function is called.

The path returned may not contain a fully qualified path name.

See Also
fillfile
getfile
getfilename

char *getfilename(index)
int index /* index into File Table */

Retrieve a file name from the File Table.

Parameter Description
index Specifies which file name to retrieve from the File Table. Entries

in the File Table start from an index of 0.

Returns
On success it returns the address of a NULL terminated string containing the file name. On error it
returns a NULL.

Comments
Use the fillfile() to fill the File Table before using getfilename().

File names are stored in a static buffer and is over-written each time this function is called.

See Also
fillfile
getfile
getfilepath

char *padfilename(path)
char *path /* character string */

Pad a file name so that it is suitable for displaying.

Parameter Description
path Address of a NULL terminated character string contain a path

name.

Returns
The address of a character string containing the padded file name.

Comments
Only the file name is padded and returned, the rest of the path is discarded.

The padded file name is stored in a static buffer and is over-written each time this function is
called.

Path Name Functions

int fillpath(path)
char *path /* directory path */

Create a Path Table containing all the directories and sub-directories starting from the specified
path.

Parameter Description
path Address of a NULL terminated character string containing a path.

This path can be relative or absolute. The file name part of the
path is expected and ignored.

Returns
On success, it returns the number of directories and sub-directories found, otherwise, it returns a
value of zero, when no directories are found.

Comments
The directories . and .. are not included in the table.

A new Path Table is allocated with each call to this function. Use freepaths() to release the
memory allocated for the table, when it is no longer needed.

The table is sorted in alphabetical order

See Also
fillpathall
freepaths
getpath

int fillpathall(void)
Create a Path Table containing all the directories and sub-directories for all drives that are non-
removable.

Returns
On success, it returns the number of directories and sub-directories found, otherwise, it returns a
value of zero, when no directories are found.

Comments
The directories . and .. are not included in the table.

A new Path Table is allocated with each call to this function. Use freepaths() to release the
memory allocated for the table, when it is no longer needed.

The table is sorted in alphabetical order

See Also
fillpath
freepaths
getpath

void freepaths(void)
Release the memory allocated to store the Path Table.

Returns
There is no return value.

See Also
fillpath
fillpathall

char *getpath(index)
int index /* index into the Path Table */

Retrieve a path name from the Path Table.

Parameter Description
index Specifies which path to retrieve from the Path Table. Entries in

the Path Table start from an index of 0.

Returns
On success it returns the address of a NULL terminated string containing the path name. On error
it returns a NULL.

Comments
All the path names returned contains *.* for the file name part..

Use the fillpath() or fillpathall() to fill the Path Table before using getpath().

Path names are stored in a static buffer and is over-written each time this function is called.

See Also
fillpath
fillpathall
freepaths

Unix Functions

char *tounix(cmd)
char *cmd /* DOS command to convert */

Convert a DOS command line to a Unix command line, when Unix mode is enabled.

Parameter Description
cmd Address of a NULL terminated character string containing a DOS

command line.

Returns
The address of a NULL terminated string containing the Unix command line, when Unix mode is
enabled, otherwise, the DOS command line is returned.

Comments
Command lines are stored in a static buffer and is over-written each time this function is called.

This function is also used to convert DOS paths to Unix paths, suitable for displaying.

See Also
isunix
todos

int isunix(void)
Determines whether Unix mode is on or off.

Returns
A value greater than zero when Unix is on and zero when Unix is off.

See Also
tounix
todos

char *todos(cmd)
char *cmd /* Unix command to convert */

Convert a Unix command line to a DOS command line, when Unix mode is enabled.

Parameter Description
cmd Address of a NULL terminated character string containing a Unix

command line.

Returns
The address of a NULL terminated string containing the DOS command line, when Unix mode is
enabled, otherwise, the Unix command line is returned.

Comments
This function overwrites the cmd parameter.

When Unix mode is not enabled, then the Unix command line is simply copied into the static
buffer and is not converted.

This function is also used to convert Unix paths to DOS paths.

See Also
tounix
isunix

File Description Functions

char *getdesc(path)
char *path /* path of file */

Retrieve a file description for the specified file.

Parameter Description
path Address of a NULL terminated character string containing the full

path of the decribed file.

Returns
The address of a NULL terminated string containing the file description. On error an empty string
is returned.

Comments
The file description is stored in a static buffer and is over-written each time this function is called.

See Also
setdesc
deldesc

int setdesc(path, str)
char *path /* path of file */
char *str /* character string */

Set a file description for the specified file.

Parameter Description
path Address of a NULL terminated character string containing the full

path of the    file to describe.
str Address of a NULL terminated character string containing the file

description. The description can contain a maximum of 60
characters.

Returns
On success a value of zero is returned. On error -1 is returned.

See Also
getdesc
deldesc

int deldesc(path)
char *path /* path of file */

Delete a file description for the specified file.

Parameter Description
path Address of a NULL terminated character string containing the

path of the described file.

Returns
A value of zero on success. On error -1 is returned.

See Also
getdesc
setdesc

Environment Functions

char *getenvironment(name)
char *name /* name of environment variable to retrieve */

Retrieve an environment variable from the WinOne environment space.

Parameter Description
name Address of a NULL terminated character string that contains the

name of the environment variable to retrieve.

Returns
The address of a NULL terminated character string, where the environment variable is stored. On
error a NULL value is returned.

Comments
The environment variable is stored in a static buffer, that is over-written each time this function is
called.

See Also
putenvironment

int putenvironment(name)
char *name /* environment string */

Place an environment string into the WinOne environment space.

Parameter Description
name Address of a NULL terminated character string that contains the

environment string to place into the WinOne environment space.

Returns
Value of zero. On error, a value of -1 is returned

Comments
The parameter name is duplicated using malloc() by WinOne and therefore, does not need to be
a static    or malloced and not freed, which is the case with the standard library function
putenv().

Environment strings have the form:-

VARNAME=ENVSTRING

To delete an environment variable, exclude the ENVSTRING. For example, to delete the
environment variable AVAR :-

putenvironment("AVAR=");

See Also
getenvironment

